首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
  国内免费   15篇
测绘学   1篇
大气科学   4篇
地球物理   6篇
地质学   30篇
海洋学   3篇
天文学   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   9篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  1997年   1篇
  1965年   1篇
  1926年   1篇
  1924年   1篇
  1923年   2篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
The formation of the eastern Pontides orogenic belt has been widely assigned to a northward subduction of the Neotethyan oceanic slab during the late Mesozoic–Cenozoic. Here we provide an alternate model based on new geological, geochemical and isotopic data. The magmatic activity in the far south of the belt started in the early Campanian with shoshonitic trachyandesites and associated pyroclastics. This sequence is covered by the late Campanian–early Maastrichtian reefal limestones and another stage of high-K volcanism represented by analcimized leucite-rich ultrapotassic rocks of the Maastrichtian–early Paleocene (?) ages. The shoshonitic and ultrapotassic rocks, with K2O contents ranging from 0.26 to 6.95 wt.%, display broadly similar rare earth and multi-element distribution patterns. Both rock types are enriched in LILE and LREE and depleted in HFSE (Nb, Ta and Ti), suggesting a subduction-enriched mantle source for the magma generation. Subsequently, during the late Paleocene, a stage of acidic magmatism (SiO2 of 53.25–73.61 wt.%) that shows adakitic geochemical characteristics including high Sr/Y (46–416) and La/Yb (11–51) and low Y (2.6–12.2 ppm), is documented characterized by melting of a mafic source such as the MORB crust with garnet in the residue. The adakitic magmatism began at ~ 56 Ma and migrated toward the north through time, culminating with porphyritic andesites (~ 47 Ma) that were emplaced in the Gumushane–Bayburt line and its vicinity. North of this line, coeval magmas show typical calc-alkaline nature and continued to develop toward further north until the middle to late Eocene. Based on the spatial and temporal variations in the magmas generated in the eastern Pontides orogenic belt, we propose a new geodynamic model to explain the tectonomagmatic evolution of these rocks and correlate the adakitic magmatism to ridge subduction and slab window process within a south-dipping subduction zone. Our model is in contrast to the previous proposals which envisage partial melting or delamination of thickened lower continental crust due to the collision in the south during the Paleocene–Eocene.  相似文献   
2.
3.
Detachment of the sliver-like Cimmerian terrane from eastern Gondwana in the Early Permian triggered mafic volcanism in many parts of the rift zone. To understand this tectonic episode we have carried out paleomagnetic investigations on mafic volcanic for-mations that were erupted on key terranes that now form part of Tibet. Specifically, we will present data from sections near Lhasa City (central Lhasa block) and Tuotuohe (central Qiangtang Block) as well as near Gyanyima (Paleotethyan sea-mount) that was emplaced onto the floor of Palaeotethys during the Late Permian. Paleomagnetic plots from each location will be used for tectonic calculations. Our new data will be used to evaluate regional scale models con-cerned with how the Cimmerian terranes in southern and SE Asia (from Iran-Tibet-SW China-Myanmar- Thailand-Sumatra) formerly abutted eastern Gond-wana.  相似文献   
4.
We can generate a net global GHG emission reduction from developing countries (in an UNFCCC term, non-Annex 1 Parties) without imposing targets on them, if we discount CERs generated from CDM projects. The CER discounting scheme means that a part or all of CDM credits, i.e., CERs, made by developing countries through unilateral CDM projects will be retired rather than sold to developed countries to increase their emissions. It is not feasible to impose certain forms of target (whether sectoral or intensity targets) on non-Annex 1 whose emission trend is hard to predict and whose industrial structure is undergoing a rapid change.

Instead of imposing targets (a command and control approach), we should apply market instruments in generating a net global emission reduction from non-Annex 1. Since April 2005 when the first unilateral CDM was approved by the CDM Executive Board, CDM has been functioning as a market mechanism to provide incentives for developing countries to initiate their own emission reduction projects. As CDM is the only market mechanism engaging developing countries in the Kyoto Protocol, we should try to re-design CDM so that it can generate net global emission reductions by introducing the idea of discounting CERs. But in order to produce meaningful GHG emission reductions by discounting CERs, the project scope of CDM has to be expanded by relaxing project additionality criteria while maintaining strict technical additionality criteria. Agreeing on the CERs Discounting Scheme will have a better political chance than agreeing on imposing emission reduction targets on developing countries.  相似文献   
5.
The present study evaluates the predictive accuracy of the feed forward backpropagation artificial neural network (BP) in evapotranspiration forecasting from temperature data basis in Dédougou region located in western Burkina Faso, sub-Saharan Africa. BP accuracy is compared to the conventional Blaney–Criddle (BCR) and Reference Model developed for Burkina Faso (RMBF) by referring to the FAO56 Penman–Monteith (PM) as the standard method. Statistically, the models’ accuracies were evaluated with the goodness-of-fit measures of root mean square error, mean absolute error and coefficient of determination between their estimated and PM observed values. From the statistical results, BP shows similar contour trends to PM, and performs better than the conventional methods in reference evapotranspiration (ET_ref) forecasting in the region. In poor data situation, BP based only on temperature data is much more preferred than the other alternative methods for ET_ref forecasting. Furthermore, it is noted that the BP network computing technique accuracy improves significantly with the addition of wind velocity into the network input set. Therefore, in the region, wind velocity is recommended to be incorporated into the BP model for high accuracy management purpose of irrigation water, which relies on accurate values of ET_ref.  相似文献   
6.
A typical feature of the Precambrian complexes of the Kokshetau, Ishkeolmess, Erementau-Niyaz, and Aktau-Dzhungaria massifs of Northern and Central Kazakhstan is the presence of the end Mesoproterozoic-beginning of the Neoproterozoic quartzite-schist sequences in these sections. The lower and upper parts of these sequences are mostly composed of schists with interlayers of quartzites and marbles and of quartzitic sandstones, respectively. It is suggested that the quartzite-schist sequences represent the sub-platform cover of a large continental block and were formed in the regressive basin with widely abundant facies of submarine deltas and a littoral shoal. The presence of horizons and the lenses enriched in zircon-rutile heavy concentrate with the amount of accessory minerals of 10-70% characterizes the quartzite-schist sections of the Kokshetau and Erementau-Niyaz massifs. The U-Pb age of zircons from one such locality in the central part of the Erementau-Niyaz massif was analyzed by LA-ICP-MS. The Concordia ages of zircons are in the intervals 1041 ± 13-1519 ± 14, 1623 ± 14-1931 ± 14, and 2691 ± 14-2746 ± 14 Ma. One age was 2850 ± 14 Ma. The age distribution is characterized by clear peaks of 1.08, 1.20. 1.34, 1.46, 1.65, 1.89, and 2.70 Ga and weak peaks of 1.13 and 1.68 Ga. The age of the majority of zircons ranges from 1309 ± 14 to 1519 ± 14 Ma. Our data indicate that mostly Neoproterozoic rocks with a subordinate role of Paleoproterozoic and Neoarchean complexes served the feeding sources for the quartzite-schist sequence of the Erementau-Niyaz massif. The Mesoproterozoic and Paleoproterozoic events identified for the detrital zircons of the Erementau-Niyaz massif are completely manifested only in Laurentia. In the first approximation, these events coincide with the assembly and breakup of the Columbia/Nuna supercontinent (~1650–1580 and 1450–1380 Ma) and assembly of the Rodinia supercontinent (1300–900 Ma).  相似文献   
7.
Taiwan is an active mountain belt formed by oblique collision between the Luzon arc and the Asian continent. Regardless of the ongoing collision in central and southern Taiwan, a post-collisional extension regime has developed since the Plio–Pleistocene in the northern part of this orogen, and led to generation of the Northern Taiwan Volcanic Zone. Emplaced at 0.2 Ma in the southwest of the Volcanic Zone, lavas from the Tsaolingshan volcano are highly magnesian (MgO≈15 wt.%) and potassic (K2O≈5 wt.%; K2O/Na2O≈1.6–3.0). Whereas these basic rocks (SiO2≈48 wt.%) have relatively low Al2O3≈12 wt.%, total Fe2O3≈7.5 wt.% and CaO≈7.2 wt.%, they are extremely enriched in large ion lithophile elements (LILE, e.g. Cs, Rb, Ba, Th and U). The Rb and Cs abundances, >1000 and 120 ppm, respectively, are among the highest known from terrestrial rocks. In addition, these rocks are enriched in light rare earth elements (LREE), depleted in high field strength elements (HFSE), and display a positive Pb spike in the primitive mantle-normalized variation diagram. Their REE distribution patterns mark with slight Eu negative anomalies (Eu/Eu*≈0.90–0.84), and Sr and Nd isotope ratios are uniform (87Sr/86Sr≈0.70540–0.70551; 143Nd/144Nd≈0.51268–0.51259). Olivine, the major phenocryst phase, shows high Fo contents (90.4±1.8; 1σ deviation), which are in agreement with the whole rock Mg-values (83–80). Spinel inclusions in olivine are characterized by high Cr/Cr+Al ratios (0.94–0.82) and have compositions similar to those from boninites that originate from highly refractory peridotites. Such petrochemical characteristics are comparable to the Group I ultrapotassic rocks defined by Foley et al. [Earth-Sci. Rev. 24 (1987) 81], such as orogenic lamproites from central Italy, Span and Tibet. We therefore suggest that the Tsaolingshan lavas resulted from a phlogopite-bearing harzburgitic source in the lithospheric mantle that underwent a recent metasomatism by the nearby Ryukyu subduction zone processes. The lavas exhibit unique incompatible trace element ratios, with Rb/Cs≈8, Ba/Rb≈1, Ce/Pb≈2, Th/U≈1 and Nb/U≈0.8, which are significantly lower than the continental crust values and those of most mantle-derived magmas. Nonmagmatic enrichment in the mantle source is therefore required. Based on published experimental data, two subduction-related metasomatic components, i.e., slab-released hydrous fluid and subducted sediment, are proposed, and the former is considered to be more pervasive for causing the extraordinary trace element ratios observed. Our observations lend support to the notion that dehydration from subducting slabs at convergent margins, as a continuing process through geologic time, can account for the fractionation of these elemental pairs between the Earth's crust and mantle.  相似文献   
8.
We conducted a comprehensive 40Ar/39Ar geochronological study of the Jiali and Gaoligong shear zones to obtain a better understanding of crustal deformation and tectonic evolution around the Eastern Himalayan Syntaxis (EHS). The new age data reveal that the main phase of deformation in the Jiali and Gaoligong shear zones occurred from 22 to 11 Ma and from 18 to 13 Ma, respectively. Structural data collected during this study indicate that the Jiali shear zone underwent a change in shear sense from sinistral to dextral during its movement history. Based on a comparison with the deformation histories of other major shear zones in the region, we argue that the initial sinistral motion recorded by the Jiali shear zone was coincident with that of the Ailao Shan–Red River shear zone, which marked the northern boundary of the southeastward extrusion of the Indochina block during the Early Miocene. From the Middle Miocene (~18 Ma), the Jiali shear zone changed to dextral displacement, becoming linked with the dextral Gaoligong shear zone that developed as a consequence of continued northward indentation of the Indian continent into Asia. Since this time, the Jiali and Gaoligong shear zones have been united, defining the southwestern boundary of the EHS during clockwise rotation of the eastward-extruding Tibetan block, as revealed by recent GPS data. The temporal change in regional deformation pattern from southeastward block extrusion to clockwise rotation of crustal fragments may have played an important role in the development of the eastern Himalayan drainage system around the EHS.  相似文献   
9.
The Karakoram fault zone is a prominent right lateral fault that connects the frontal thrust of the North Pamir with the Indus suture zone near Mount Kailas. Its nature and age of initiation is controversial. In the Nubra valley, Ladakh, India, a Karakoram range granite is thrust over Cretaceous magmatic arc rocks and this thrust is cut by a western strand of the Karakoram fault zone. Three different lithologies from this granite gave weighted mean zircon U/Pb ages of 12.92±0.77 Ma, 12.41±0.43 Ma, and 11.72±0.31 Ma. The ages indicate a relatively short intrusive history of about 1 Ma for the phases: the geochemistry is practically identical to the Pangong leucogranites in the same tectonic block. The Karakoram fault zone in this area is thus less than ~12 Ma old which supports a post middle Miocene (Serravallian) age of Karakoram fault initiation in this area.  相似文献   
10.
Abstract

It is shown how the thermodynamic analogy of transport processes, previously established for non-negative definite transported quantities, can be extended to quantities that can become negative  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号